Histamine and gut mucosal immune regulation

S. Smolinska1,2, M. Jutel1,2, R. Crameri3 & L. O’Mahony3

1Department of Clinical Immunology, Wroclaw Medical University, Wroclaw; 2ALL-MED Medical Research Institute, Wroclaw, Poland; 3Swiss Institute of Allergy and Asthma Research, University of Zurich, Davos, Switzerland

Keywords
allergy; histamine; inflammation; microbial metabolites; mucosal immunology.

Correspondence
Dr. Liam O’Mahony, SIAF, Obere Strasse 22, 7270 Davos Platz, Switzerland.
Tel.: +41-81-4100853
Fax: +41-81-4100840
E-mail: liam.omahony@siaf.uzh.ch

Accepted for publication 21 October 2013
DOI:10.1111/all.12330

Edited by: Hans-Uwe Simon

Histamine is a biogenic amine with extensive effects on many cell types, mediated by the activation of its four receptors (H1R–H4R). Distinct effects are dependent on receptor subtypes and their differential expression. Within the gastrointestinal tract, histamine is present at relatively high concentrations, particularly during inflammatory responses. In this review, we discuss the immunoregulatory influence of histamine on a number of gastrointestinal disorders, including food allergy, scombroid food poisoning, histamine intolerance, irritable bowel syndrome, and inflammatory bowel disease. It is clear that the effects of histamine on mucosal immune homeostasis are dependent on expression and activity of the four currently known histamine receptors; however, the relative protective or pathogenic effects of histamine on inflammatory processes within the gut are still poorly defined and require further investigation.

Histamine \([2-(4\text{-imidazolyl})\text{-ethylamine}]\) is a short-acting endogenous amine, which is widely distributed throughout the body (1, 2). Histamine is synthesized by the enzyme histidine decarboxylase (HDC), which decarboxylates the semi-essential amino acid 1-histidine. Originally discovered more than 100 years ago, histamine was first chemically synthesized by Windaus and Vogt in 1907. Soon afterward in 1910, Dale and Laidlaw reported the first biological functions of histamine, whereby they recognized that histamine had the ability to mimic smooth muscle-stimulating and vasodepressor action previously observed during anaphylaxis (3, 4). Subsequently, histamine was isolated from many different tissues, and thus, its name was based on the Greek word ‘histos’, which means tissue. Studies utilizing HDC-knockout animals have revealed the multiple effects of histamine on allergic, peptic, and neurologic functions, while more recent studies demonstrate the influence of histamine on wound healing, circulatory disease, immunology, oncology, and infectious disease (5).

Histamine can be produced by a wide variety of different cell types (6–10). Mast cells, basophils, gastric enterochromaffin-like cells, and histaminergic neurons are the best described cellular sources of histamine, but other cell types, for example platelets, dendritic cells (DCs), and T cells, can also express HDC following stimulation. In addition, certain microbes can express HDC, and these will be discussed further below. HDC expression and histamine release is influenced by cytokines including IL-1, IL-3, IL-12, IL-18, GM-CSF, macrophage colony-stimulating factor, and tumor necrosis factor (TNF)-α (1, 11, 12). Mast cells and basophils store large quantities of histamine, which is released upon degranulation in response to immunological and nonimmunological stimuli. However, other cell types such as DCs and lymphocytes do not store histamine intracellularly, but secrete it following synthesis (13–15).

An important aspect of histamine biology are the enzymes that degrade histamine. Histamine can be metabolized by oxidative deamination (diamine oxidase – DAO) or by ring methylation (histamine-N-methyltransferase – HMNT) (16). Diamine oxidase is stored in plasma membrane-associated vesicular structures in epithelial cells and is secreted into the circulation following stimulation. Histamine-N-methyltransferase is a cytosolic enzyme, which can convert histamine...
only in the intracellular space of cells. Thus, it has been proposed that DAO may be responsible for scavenging extracellular histamine, while HNMT metabolizes intracellular histamine. Histamine-N-methyltransferase has a slightly higher affinity for histamine [Michaelis–Menten constant (k_M): 6–13 μM] compared to DAO (k_M: 20 μM). In mammals, DAO expression is restricted to specific tissues; the highest activities are in the small bowel, colon, placenta, and kidney (17). Histamine-N-methyltransferase is widely expressed in human tissues; the greatest expression is in kidney and liver, followed by spleen, colon, prostate, ovary, spinal cord cells, bronchi, and trachea. Histamine-N-methyltransferase is regarded as the key enzyme for histamine degradation in the bronchial epithelium (18).

While histamine is well recognized for its effects in the immediate-type hypersensitivity response (i.e., increased vascular permeability, smooth muscle contraction, activation of nociceptive nerves, wheal and flare reaction and itch response), the pathological relevance of increased histamine levels at diseased sites is less well understood in other disorders such as inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS) (19, 20). Indeed, histamine may negatively or positively influence parasitic and bacterial infections (21, 22). Within the gastrointestinal tract, histamine levels can be influenced by host allergic and inflammatory responses, altered activity of degradative enzymes, dietary intake, and microbial processes (Fig. 1). In this review, we will discuss the potential pathological and potential

Figure 1 Histamine within the mucosa. The major cellular sources of histamine within the gastrointestinal tract are illustrated. Histamine alters the dendritic cell response to microbes by enhancing IL-12 secretion via H1R, while H2R activation promotes IL-10 secretion and inhibits IL-12, TNF-α, and IL-23 secretion. In addition, the activation of H1R on lymphocytes promotes TH1 polarization, while the activation of H2R suppresses TH1 and TH2 polarization, favoring polarization to TREGs. H4R may aid TH2 polarization, and H4R displays chemotactic properties. Activation of epithelial cells with histamine influences barrier function. Enteric neurons are activated via H3R.

© 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd
Protective roles of histamine in gastrointestinal disorders. In addition, we will highlight some of the limitations regarding the diagnosis of and treatment for these ailments.

Immunomodulatory effects of histamine

The immune response is strictly controlled by effector and regulatory processes, which normally result in protection from infection and tolerance of innocuous environmental antigens. However, in inflammatory diseases, the activated immune response results in a chronic pro-inflammatory state characterized by activated innate pathways with aberrant antigens. However, in inflammatory diseases, the activated regulatory processes, which normally result in protection

The immune response is strictly controlled by effector and regulatory processes, which normally result in protection from infection and tolerance of innocuous environmental antigens. However, in inflammatory diseases, the activated immune response results in a chronic pro-inflammatory state characterized by activated innate pathways with aberrant antigens. However, in inflammatory diseases, the activated regulatory processes, which normally result in protection

The immune response is strictly controlled by effector and regulatory processes, which normally result in protection from infection and tolerance of innocuous environmental antigens. However, in inflammatory diseases, the activated immune response results in a chronic pro-inflammatory state characterized by activated innate pathways with aberrant antigens. However, in inflammatory diseases, the activated regulatory processes, which normally result in protection

The immune response is strictly controlled by effector and regulatory processes, which normally result in protection from infection and tolerance of innocuous environmental antigens. However, in inflammatory diseases, the activated immune response results in a chronic pro-inflammatory state characterized by activated innate pathways with aberrant antigens. However, in inflammatory diseases, the activated regulatory processes, which normally result in protection

The immune response is strictly controlled by effector and regulatory processes, which normally result in protection from infection and tolerance of innocuous environmental antigens. However, in inflammatory diseases, the activated immune response results in a chronic pro-inflammatory state characterized by activated innate pathways with aberrant antigens. However, in inflammatory diseases, the activated regulatory processes, which normally result in protection
Due to the various symptoms observed in multiple organs, the diagnosis of histamine intolerance is difficult. Diagnosis of histamine intolerance requires the presentation of ≥2 typical symptoms of histamine intolerance and improvement following the introduction of a histamine-free diet and the use of antihistamines. Potential food allergies should be excluded by skin prick test or by the determination of specific IgE for food allergens. Occult systemic mastocytosis should be also excluded, for example by measuring serum tryptase levels. The accurate diagnosis of histamine intolerance should be based on the well-documented association between food consumption and symptoms, identification of food causing symptoms, determination of histamine content of the food causing the symptoms, exclusion of other causes (e.g., allergy, toxins, metabolites), oral histamine provocation (if possible), determination of DAO and HNMT contents and activity in intestinal mucosa (not in peripheral blood), and the analysis of DAO and HNMT genetic polymorphisms (48).

For histamine-intolerant patients, alcohol and long-ripened or fermented (and therefore histamine-rich) foods, for example aged cheese, cured meat, yeast products, spinach, tomatoes, and histamine liberators, such as citrus fruit, should be avoided (49). A histamine-free diet can be complemented with adjuvant administration of antihistamine receptor drugs. In addition, histamine degradation can be supported by the administration of vitamin C and B-6, which may increase DAO activity (50, 51). The use of drugs that interfere with histamine metabolism should be avoided. Recently, capsules containing DAO isolated from pig kidneys have been generated to supplement the proposed deficit of endogenous human DAO in patients with histamine intolerance (45).

Scombroid poisoning

Scombroid poisoning (the term ‘scombroid’ is derived from the type of fish Scombridae, which were first implicated), or histamine fish poisoning, is a type of food poisoning with symptoms and treatment similar to those associated with seafood allergies (52). Scombroid poisoning results from the consumption of mishandled fish. Histamine and other decomposition products are generated in fish tissues by bacterial conversion of free histidine (53). Scombroid fish have high levels of free histidine in their muscle tissues, compared to nonscombroid species, which have lower levels. However, nonscombroid fish species have also been implicated in scombroid poisoning. Histamine is produced by a wide range of bacteria, but the major histamine-producing bacteria in fish are Gram-negative mesophilic enteric and marine bacteria (54, 55). Examples include strains of Morganella morganii, Enterobacter aerogenes, Raoultella planticola, Raoultella ornithinolytica, and Photobacterium damsela, some of which can secrete ≥1000 ppm histamine during optimal in vitro culture conditions. Strains of other species, including Hafnia alvei, Citrobacter freundii, Vibrio alginolyticus, and Escherichia coli, are weak histamine producers (or nonproducers), yielding concentrations <500 ppm under similar in vitro culture conditions (56, 57). The symptoms of scombroid poisoning are variable and can include a peppery or metallic taste, oral numbness, headache, dizziness, palpitations, rapid and weak pulse, low blood pressure, difficulty in swallowing, thirst, hives, rash, flushing, and facial swelling. Sometimes nausea, vomiting, and diarrhea are also observed. The symptoms of scombroid poisoning typically are rapid in onset following the consumption of fish and recovery is usually complete within 24 h, but in rare cases can last for days. Treatment for scombroid poisoning includes the administration of antihistamines, while corticosteroids are ineffective (52). The proper handling and storage of fish is the most effective preventive measure as cooking contaminated fish does not prevent histamine poisoning because the toxins are heat stable.

In addition to the presence of histamine, other mechanisms have also been proposed that contribute to scombroid poisoning. Firstly, histamine toxicity could be potentiated by toxins, which inhibit histamine-metabolizing enzymes. Histamine toxicity is potentiated by the action of DAO and HNMT inhibitors that are also present together with dietary histamine in the ingested fish. Inhibition of HNMT and DAO, which usually degrade histamine, leads to increased histamine levels within the gut, and subsequently, increased amounts of histamine are available for absorption to extra-intestinal tissues (58). Secondly, the induction of mast cell degranulation will release endogenous histamine. The second hypothesis is based on ‘scombrotoxins’ that are mast cell degranulators associated with the spoiled fish. This hypothesis is significantly different from the first in that dietary histamine in the implicated fish is not solely required. Rather, the observed toxicity may be due to the endogenous release of histamine (59). Finally, currently unknown histamine receptor agonists may be present within the decomposed fish. For example, gizzerosine is a small peptide found in poor-quality feed produced by overheating decomposed fish material (60). It is a potent H2R agonist, approximately 200 times more potent than histamine itself, and gizzerosine kills poultry by causing excessive excretion of digestive acids (60). Although certainly not implicated in scombroid poisoning, gizzerosine provides an excellent example of a previously unknown and histidine-derived agonist active at a histamine receptor. Based on this precedent, there may be other histidine-derived compounds in scombroid poisoning-implicated fish that could bind to histaminergic receptors, and thus, it is not possible to rule out the existence of other agonists without comparing the total histamine receptor bioactivity with the predicted activity based on known histamine concentrations in outbreak-implicated sample extracts. If there were other histaminergic receptor agonists for the various histaminergic receptors with activity comparable to that shown by gizzerosine for H2 receptors, low levels of bioactive compounds could be enough to cause illness.

Food allergy

The gut immune system is exposed daily to a large number and variety of foreign proteins, and the ability to avoid allergic reactions to food is significantly influenced by the way these potential allergens are transported, presented, and responded to (61). The influence of histamine on altering the
gut immune response to food antigens has not been definitively examined; however given the immunoregulatory functions of histamine described above, it is tempting to speculate that histamine and its receptors could be involved either directly or indirectly in food antigen tolerance and sensitization mechanisms. In addition to eliciting the major symptoms of IgE-mediated food allergy, the ingestion of histamine-rich food, alcohol, or drugs that release histamine or block DAO may induce diarrhea, hypotension, arrhythmia, bronchial constriction, rhinoconjunctivitis, urticaria, or headache, which can confuse the diagnosis of food allergy.

In food-allergic subjects, enhanced secretion of histamine and increased numbers of mast cells in the intestines have been demonstrated (62–64). From the duodenal mast cells of food-allergic patients, the anti-IgE-mediated mast cell histamine release was increased compared with nonallergics. Histamine release from basophils was positively correlated with the test scores of the RAST analysis, skin prick test, and food challenge (65). This result was confirmed in other studies, whereby incubation of biopsies from food-allergic patients with anti-human IgE antibodies or allergens induced a ninefold increase in histamine release. Stimulation of biopsies ex vivo with histamine itself induced a concentration-dependent NO response only in food-allergic subjects (66). It has been postulated that this method can also be utilized diagnostically to quantify allergen-induced histamine secretion in live human colorectal biopsy tissue and has been suggested to correlate with alterations in transepithelial resistance (67).

It is important to note that not only mast cells or basophils are cellular sources of histamine. Other host cells and an altered microbiome may also contribute to increased histamine levels and the associated response to food allergens. However, this has not been studied in detail for food-allergic patients.

The relative contribution of the different histamine receptors to the induction of food allergy has also not been adequately studied. In mice, intraperitoneal administration of cimetidine (H2R antagonist) together with ovalbumin (OVA) resulted in enhanced Th2 cytokine secretion by spleen cells stimulated with OVA in vitro and increased IgE levels in the sera (68). In humans, treatment with H2R antagonists results in enhanced IgE production against food antigens (69, 70). These results indicate that H2R antagonists may contribute to the development of IgE-mediated food allergies; however, the use of other non-H2R targeting antacids is also a risk factor for the development of food allergies.

Current therapy for food allergy is not curative. The effectiveness of antihistamines and mast cell stabilizers in ameliorating food allergy symptoms is very limited. Single-nucleotide polymorphisms in the DAO gene have been detected in patients with food allergy symptoms; however, the IgE status of these patients was not described and this group could potentially include histamine-intolerant, rather than food-allergic, individuals (71). Current DAO preparations did not reduce mast cell degranulation in response to allergens; however, porcine kidney DAO shows antihistaminic activity in vivo and protects against pig anaphylactic shock in an experimental model, which is directly related to the inactivation of histamine (72). A new concept for the treatment of food allergy is based on the oral administration of DAO associated with catalase. An oral bi-enzymatic therapy with DAO and catalase was suggested to reduce the levels of intestinal histamine via degradation by DAO, with the production of H2O2, NH3, and imidazole acetaldehyde. As H2O2, a by-product of degradation, is toxic due to its pro-oxidant effects on intestinal cells, catalase has been included to decompose H2O2.

Irritable bowel syndrome

Irritable bowel syndrome is a chronic condition that affects 10–20% of the population. Patients experience recurrent abdominal discomfort or pain, in combination with altered bowel habits. The etiology and the pathophysiology are only partly understood, with some evidence suggesting that disrupted mucosal immune responses play a role (73, 74). In addition, the composition of the gastrointestinal microbiota is altered and the administration of specific microbes has therapeutic effects (75–77). Frequently patients with IBS experience postprandial worsening of their symptoms, and patients typically avoid certain foods to reduce symptoms. Thus, the majority of patients with IBS feel that specific foods are important triggers of their symptoms. In a recent study, 58% of the patients with IBS studied experienced gastrointestinal symptoms from histamine-releasing food items and foods rich in biogenic amines (78). Interestingly, the use of spherical carbon absorbent (which adsorbs molecules such as histamine from the gut lumen) has been beneficial for some patients (79).

Endogenous histamine has been implicated as an important mediator associated with symptom severity in IBS. Activated mast cells, which were spontaneously secreting higher amounts of histamine, in proximity to colonic nerves were correlated with abdominal pain in patients with IBS (80). Mucosal biopsy supernatants from patients with IBS contained higher levels of histamine compared to biopsy supernatants from healthy volunteers, while the mast cell stabilizer and H1R antagonist ketotifen reduces some IBS symptoms (20, 81).

Inflammatory bowel diseases

Crohn’s disease (CD) and ulcerative colitis (UC) are the two major forms of IBD, and both diseases are associated with high morbidity and healthcare costs. The two disorders have distinct features (82). Ulcerative colitis is characterized by inflammation with superficial ulcerations limited to the mucosa of the colon. Inflammation usually starts in the rectum and continuously spreads throughout the colon. Crohn’s disease, however, is characterized by a discontinuous pattern, potentially affecting the entire gastrointestinal tract. In contrast to ulcerative colitis, inflammation in patients with CD is transmural with large ulcerations, and occasionally, granulomas are observed. The precise mechanisms causing these diseases remain unknown but complex interactions between the immune system, enteric microbiota, and host genotype underlie the development of IBD. Some studies have demonstrated...
that components of the intestinal microbiota can drive protective or pathological responses in IBD models, highlighting the importance of host–microbe communication in the development of these diseases.

The importance of mast cells has been well documented in patients with IBD. In 1980, Dvorak and colleagues reported that the number of mast cells was markedly increased in the involved area of the ileum of patients with CD (83). In 1990, Nolte et al. found that the mast cell count in patients with ulcerative colitis was increased compared with that in control subjects and patients with CD. In addition, more mast cells were present in inflamed tissue compared to adjacent noninflamed tissue (84). Additional studies confirmed the finding that mast cell number was significantly increased in inflamed tissue from patients with ulcerative colitis, particularly at the line of demarcation between inflamed and normal mucosa. The accumulation of mast cells at the visible line of demarcation between normal and abnormal mucosa suggested that mast cells played a crucial role in the pathogenesis of the disease, either causing further damage or limiting the expansion of damage (85). Nishida and colleagues found that there were greater numbers of mast cells than macrophages in the lamina propria of patients with IBD, although this was not found in patients with collagenous colitis (86). Interestingly, increased numbers of mast cells were observed throughout the lamina propria, particularly in the upper part of lamina propria, whereas increased numbers of macrophages were only seen in the lower part of lamina propria in patients with IBD. This suggests that the release of pro-inflammatory mediators from accumulated mast cells could have led to the recruitment of macrophages to the lamina propria. Dramatically increased numbers of mast cells were also observed in the hypertrophied and fibrotic muscularis propria of structures in CD compared with normal bowel (87).

The rate of histamine secretion from the jejunum was increased in patients with CD compared with normal controls, and the secretion of histamine was related to disease activity, indicating that degranulation of mast cells may be important in active CD (88). Highly increased mucosal histamine levels were also observed in allergic enteropathy and ulcerative colitis (63). Increased levels of N-methylhistamine, a stable histamine metabolite, were detected in the urine of patients with active CD or ulcerative colitis (89). Because an increased level of N-methylhistamine was significantly correlated with clinical disease activity, the above findings further suggest that histamine plays an important role in the pathogenesis of these diseases. Mast cells isolated from the resected colon of active CD or ulcerative colitis patients were able to release more histamine than those from normal colon when being stimulated with epithelial proteins (90). Similarly, cultured colorectal biopsies from patients with IBD secreted more histamine toward substance P alone or substance P with anti-IgE compared to the samples from control subjects cultured under the same conditions (91). Histamine-N-methyltransferase gene expression is reduced in inflamed mucosa and DAO polymorphisms have been identified for patients with IBD, suggesting that there could be dysregulated metabolism of histamine within the inflamed gut (71, 92).

While it is clear that histamine is present at higher levels within the mucosa of patients with IBD, the potential protective or pathological role for histamine signaling through its different receptors has not been determined in patients with IBD. Recently, the use of H2R antagonists, but not proton pump inhibitors, significantly increased the risk of hospitalization or surgery in patients with CD (93). Although these results should be interpreted with caution, one could hypothesize that histamine signaling through the H2R may have some protective effects within the mucosa of patients with IBD. In contrast, inhibition of the H1R may have some protective effects in a subset of patients with IBD, but these studies need to be repeated in larger cohorts (94, 95).

The role for microbial-derived histamine

There are many new examples, appearing regularly in the literature, which describe novel microbe–host interactions that impact the immunological health of the host. Specific microbes within the microbiota have been described to release the biogenic amine histamine. In bacteria, the expression and activity of amino acid decarboxylases is enhanced in acidic environments, such as in the stomach. This leads to a local increase in pH around the bacteria and protects it from the acidic, chloride-rich environment. Furthermore, expression and activity of decarboxylases in bacteria is regulated by the presence of fermentable carbohydrates and oxygen, the redox potential of the medium, the temperature, and the sodium chloride concentration. The biological consequences of biogenic amine secretion in vivo by the resident microbiota are largely unknown. Histamine can have both pro-inflammatory and anti-inflammatory effects on immunoregulatory processes, depending on which histamine receptor is activated. With the exception of scombroid poisoning, it is currently unknown whether histamine secretion by the microbiota is altered during, or contributes to, mucosal inflammatory disorders. Maintenance of mucosal homeostasis is heavily dependent on appropriate sampling and processing of microbial ligands by the innate immune system, in particular DCs. We have demonstrated that histamine significantly alters the DC response to microbial ligands via the H2R and administration of a histamine-secreting Lactobacillus rhamnosus strain to H2R-knockout mice results in a loss of the microbe’s immunoregulatory activities (32). Other in vitro studies have also confirmed this finding, for example histamine secretion by a Lactobacillus reuteri strain modulates TLR-2-induced TNF-α secretion in vitro (96). These observations suggest that histamine from the enteric microbes might exert immunoregulatory effects in vivo; however, it remains to be determined whether these effects are protective or pathological.

Future perspectives and conclusions

It is clear that histamine is present within the gastrointestinal mucosa and increased levels are associated with a range of mucosal inflammatory disorders. Due to the obvious overlap in symptoms, great care needs to be exercised in the differential diagnosis of these disorders. Treatment strategies that promote H2R expression and activity, with decreased H1R or
H4R activity, may improve mucosal immunoregulatory activity and protect against allergic sensitization and inflammatory disorders. The contribution of the microbiota to the histamine content of the gut and histamine receptor activation is currently unknown. Even though histamine was first discovered more than 100 years ago, there remain substantial gaps in our knowledge concerning the immunoregulatory activity of histamine, particularly within the gastrointestinal tract.

Funding
The authors are supported by Swiss National Foundation grants (project numbers: 310030-127356 and 310030-144219), Allergiastiftung Ulrich Müller-Gierok, European Union research grants, EU Marie Curie grants, and Polish National Science Centre grants No. 2011/01/B/NZ6/01872, 2012/04/M/NZ6/00355 and 2012/04/A/NZ6/00407.

Conflicts of interest
Liam O’Mahony is a consultant to Alimentary Health Ltd and has received research funding from GSK. Marek Jutel is a consultant to Allergopharma, GER, Anergis, CH, Biomay, and received lecture fees from GSK, Allergopharma, Stallergens, ALK. Sylwia Smolinska and Reto Crameri have no conflict of interests to declare.

References
Histamine

Smolinska et al.

